Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis.

نویسندگان

  • Françoise Dantzer
  • Manuel Mark
  • Delphine Quenet
  • Harry Scherthan
  • Aline Huber
  • Bodo Liebe
  • Lucia Monaco
  • Alexandra Chicheportiche
  • Paolo Sassone-Corsi
  • Gilbert de Murcia
  • Josiane Ménissier-de Murcia
چکیده

Besides the established central role of poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 in the maintenance of genomic integrity, accumulating evidence indicates that poly(ADP-ribosyl)ation may modulate epigenetic modifications under physiological conditions. Here, we provide in vivo evidence for the pleiotropic involvement of Parp-2 in both meiotic and postmeiotic processes. We show that Parp-2-deficient mice exhibit severely impaired spermatogenesis, with a defect in prophase of meiosis I characterized by massive apoptosis at pachytene and metaphase I stages. Although Parp-2(-/-) spermatocytes exhibit normal telomere dynamics and normal chromosome synapsis, they display defective meiotic sex chromosome inactivation associated with derailed regulation of histone acetylation and methylation and up-regulated X- and Y-linked gene expression. Furthermore, a drastically reduced number of crossover-associated Mlh1 foci are associated with chromosome missegregation at metaphase I. Moreover, Parp-2(-/-) spermatids are severely compromised in differentiation and exhibit a marked delay in nuclear elongation. Altogether, our findings indicate that, in addition to its well known role in DNA repair, Parp-2 exerts essential functions during meiosis I and haploid gamete differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly (ADP-ribosyl)ation as one of the molecular events that accompany mammalian spermatogenesis

It is known that mammalian spermatogenesis is a synchronous process of cellular differentiation during which morphological changes occur, concomitantly with alterations in the complement of constituent proteins, that reflect differences in the mRNA populations coding for stage-specif ic proteins. Moreover, the most dramatic changes in chromatin structure observed in eukaryotes, take place durin...

متن کامل

Effect of nicotinamide on RNA and DNA synthesis and on poly(ADP-ribose) polymerase activity in normal and phytohemagglutinin stimulated human lymphocytes.

The nuclei of eukaryotic cells contain the enzyme poly(ADP-ribose) polymerase which converts NAD into poly(ADP-ribose) with the elimination of nicotinamide [1,2]. Several reports suggest that poly(ADP-ribose) polymerase is involved in the regulation of eukaryotic DNA synthesis and in the DNA repair mechanisms (reviewed [3-S]). A higher poly(ADP-ribose) polymerase activity in leukemic leukocytes...

متن کامل

Effects of Poly (ADP-ribose) Polymerase Inhibition on DNA Integrity and Gene Expression in Ovarian Follicular Cells in Mice with Endotoxemia

Background: A mouse model of lipopolysaccharide (LPS)-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed. M...

متن کامل

Neurological and Histological Consequences Induced by In Vivo Cerebral Oxidative Stress: Evidence for Beneficial Effects of SRT1720, a Sirtuin 1 Activator, and Sirtuin 1-Mediated Neuroprotective Effects of Poly(ADP-ribose) Polymerase Inhibition

Poly(ADP-ribose)polymerase and sirtuin 1 are both NAD(+)-dependent enzymes. In vitro oxidative stress activates poly(ADP-ribose)polymerase, decreases NAD(+) level, sirtuin 1 activity and finally leads to cell death. Poly(ADP-ribose)polymerase hyperactivation contributes to cell death. In addition, poly(ADP-ribose)polymerase inhibition restores NAD(+) level and sirtuin 1 activity in vitro. In vi...

متن کامل

Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1

Shelterin/telosome is a multi-protein complex at mammalian telomeres, anchored to the double-stranded region by the telomeric-repeat binding factors-1 and -2. In vitro modification of these proteins by poly(ADP-ribosyl)ation through poly(ADP-ribose) polymerases-5 (tankyrases) and -1/-2, respectively, impairs binding. Thereafter, at least telomeric-repeat binding factor-1 is degraded by the prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 40  شماره 

صفحات  -

تاریخ انتشار 2006